

ES40N120HAA SiC MOSFET

V_{DS} = 1200 V I_D (T_C=25°C) = 67A R_{DS(on).typ} = 35 mΩ@ V_{GS}=18 V

Marking

ES40N120HAA

TO-263-7

Package Parameters

Part Number

ES40N120HAA

Features

- Wide bandgap SiC MOSFET technology
- Low On-Resistance with High Blocking Voltage
- Low Capacitances with High-Speed switching
- Low reverse recovery(Qrr)
- Halogen free, RoHs compliant

Benefits

- Reduce switching losses
- Increased system Switching Frequency
- Increased power density
- Reduction of heat sink requirements

Applications

- Switch mode power supplies
- Renewable energy
- Motor drives
- High voltage DC/DC converters

Package Pin Definitions

- Pin1- Gate
- Pin2- Driver Source
- Pin3, 4, 5, 6, 7- Power Source

Package

TO-263-7

Maximum Ratings (Tc=25 $^{\circ}\!\!\mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Value	Unit	Note
V _{DSmax}	Drain-Source Voltage	V _{GS} = 0V, <i>I</i> _D = 100μA	1200	V	
V _{GSmax}	Gate-Source voltage	AC (f > 1 Hz)	-10/+25	V	
V _{GSop}	Recommend Gate-Source Voltage	Static	-4/+18	V	
	Continuous Drain current	V _{GS} = 18V, T _C = 25°C	67	٨	Fig. 14
Ι _D		V _{GS} = 18V, T _C = 100°C	47	A	Fig. 14
I _{D,pulse}	Pulsed Drain Current	Pulse with t_p limited by T_{jmax}	133	А	
PD	Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}, T_{\rm j} = 175^{\circ}{\rm C}$	319	W	Fig. 16
Tj	Operating junction temperature		-55~175	°C	
T _{stg}	Storage temperature		-55~175	°C	
	TO-247 mounting torque	M3 Screw	0.7	Nm	

Thermal Characteristics

Symbol	Parameter	Value		Unit	Note	
	Falameter	Min.	Тур.	Max.		NOLE
R _{th(jc)}	Thermal resistance from Junction to Case		0.47		K/W	Fig. 45
R _{th(ja)}	Thermal resistance from Junction to Ambient		40		K/W	Fig. 15

Electrical Characteristics *T*_j=25°C unless otherwise specified

Static Characteristics

Cumhal	Devementer	Test conditions Min. Typ. M			11	Note	
Symbol	Parameter			Тур.	Max.	Unit	Note
$V_{(BR)DSS}$	Drain-Source Breakdown voltage	V _{GS} = 0V, <i>I</i> _D = 100μA	1200			V	
Veen	Gate Threshold voltage	$V_{GS} = V_{DS}$, $I_D = 9.5 \text{mA}$		2.9		v	Fig. 9
V _{GS(th)}	Gale miesnoù volage	V_{GS} = V_{DS} , I_D = 9.5mA, T_j =175°C		2.0			Fig. 9
lgss	Gate-Source Leakage current	$V_{GS} = 18V, V_{DS} = 0V$			250	nA	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 1200V, V_{GS} = 0V, T_{j} = 25°C		1	50	μA	
P	Drain-Source On-state	$V_{GS} = 18V, I_D = 40A$ $V_{GS} = 20V, I_D = 40A$		35 32	48	mΩ	Fig. 3, 4,
R _{DS(on)}	$V_{GS} = 18V, I_D = 40A, T_j = 1$	$V_{GS} = 18V, I_D = 40A, T_j = 175^{\circ}C$ $V_{GS} = 20V, I_D = 40A, T_j = 175^{\circ}C$		75 70		11122	5
~	Transconductance	V _{GS} = 18 <i>V</i> , <i>I</i> _D = 40A		25		S	
g _{fs}		V _{GS} = 18 <i>V, I</i> _D = 40A, <i>T</i> _j = 175°C		21		3	Fig. 6

Gate Charge Characteristics

Symbol	Parameter	Test conditions	Value			Unit	Note
			Min.	Тур.	Max.	Unit	Note
Q _{GS}	Gate to Source Charge	<i>V_{DS}</i> = 800V		22.6			
Q _{GD}	Gate to Drain Charge	I _D = 20A V _{GS} = -4V/20V		31.2		nC	Fig. 10
Q _G	Total Gate Charge			103			

AC Characteristics (*T*_j=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Value			Unit	Note
Symbol	Farameter	Test conditions	Min.	Тур.	Max.	Unit	NOLE
Ciss	Input Capacitance	V _{GS} = 0V, V _{DS} = 1000V		2820		pF	
Coss	Output Capacitance	f =1 MHz V _{AC} = 25mV		108		pF	Fig. 13
Crss	Reverse Transfer Capacitance			6.6		pF	
R _{G(int)}	Internal Gate Resistance	f=1 MHz, V _{AC} = 25mV		1		Ω	

Reverse Diode Characteristics (*T*_j=25°C unless otherwise specified)

Symbol	Parameter	eter Test conditions		Value			Note
	Farameter Test conditions	Test conditions	Min.	Тур.	Max.	Unit	Note
Ma	Diado Forward Voltago	V _{GS} = -4V, I _{SD} = 20A		3.9		V	
V _{SD}	Diode Forward Voltage	$V_{GS} = -4V$, $I_{SD} = 20A$, $T_j = 175^{\circ}C$		3.3		V	Fig. 7,8
Is	Continuous Diode Forward Current	V _{GS} = -4V, T _C = 25°C		72		A	
I _{S, pulse}	Diode pulse Current	V_{GS} = -4V, pulse width t _p limited by T _{jmax}		133		A	

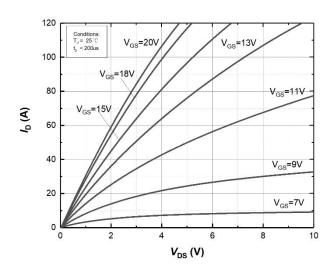


Figure 1. Output characteristics at Tj=25°C

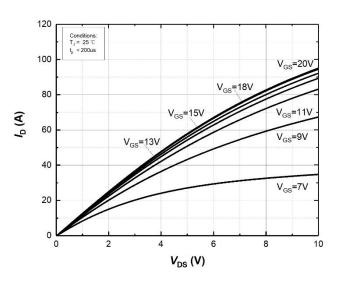


Figure 2. Output characteristics at Tj=175°C

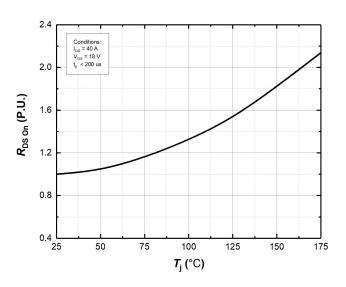
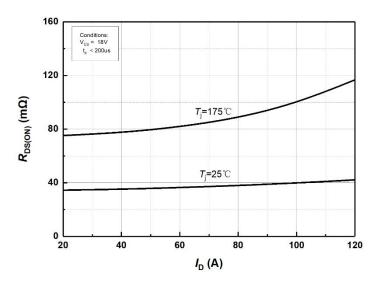



Figure 3. Normalized On-Resistance vs. Temperature

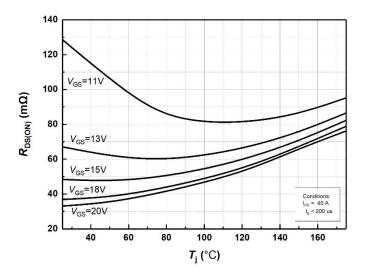
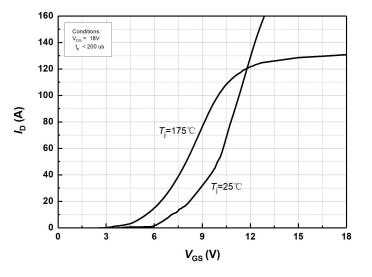
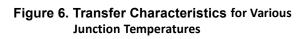




Figure 5. On-Resistance vs. Temperature for Various Gate Voltage

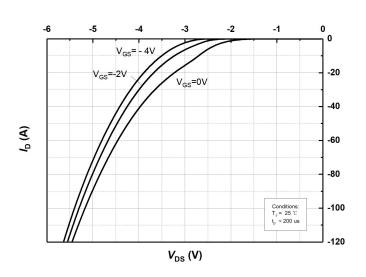
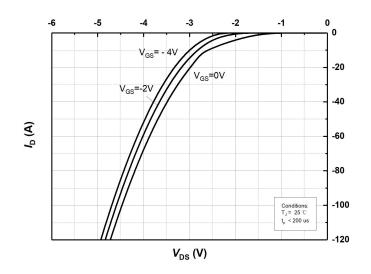
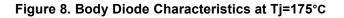




Figure 7. Body Diode Characteristics at Tj=25°C

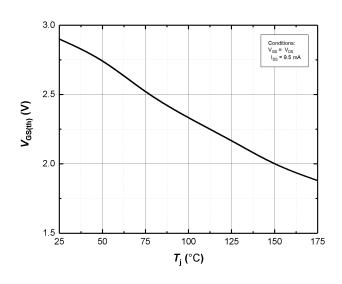


Figure 9. Threshold Voltage vs. Temperature

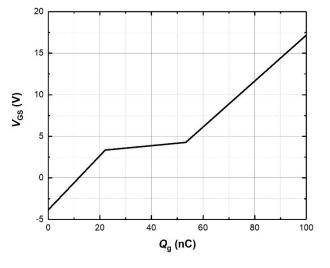


Figure 10 Gate Charge Characteristics

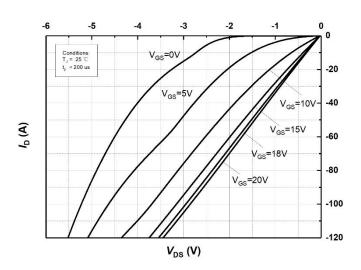
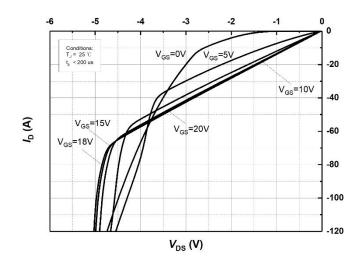



Figure 11. 3rd Quadrant Characteristic at Tj=25°C

ES40N120HAA SiC MOSFET

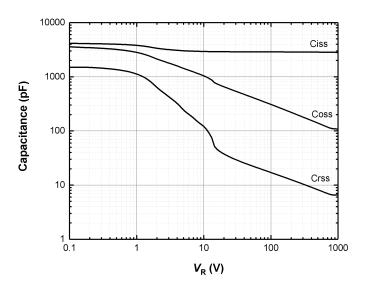


Figure 13. Capacitances vs. Drain-Source Voltage (0 – 1000V)

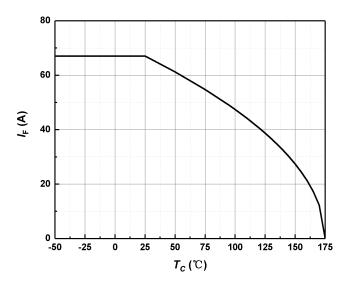
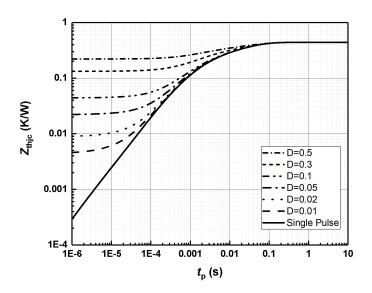
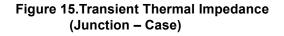
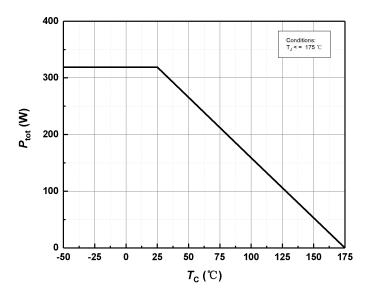
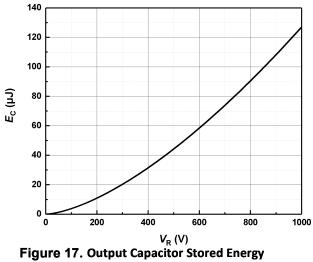
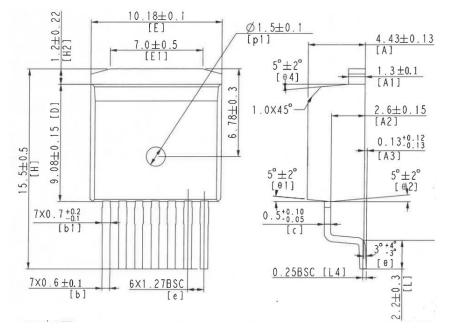
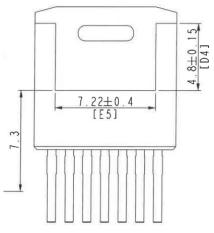




Figure 14. Continuous Drain Current Derating vs Case Temperature


Figure 16. Maximum Power Dissipation Derating vs. Case Temperature



Package Dimensions

5°±2 [03	2XR0.5

SYMBOL		MM	
SIMBOL	MIN	NOM	MAX
D	8.93	9.08	9.23
E	10.08	10.18	10.28
A	4.30	4.43	4.56
Η	15.00	15.50	16.00
E1	6.50	7.00	7.50
E2	6.82	7.22	7.62
D4	4.65	4.80	4.95
A1	1.20	1.30	1.40
A2	2.45	2.60	2.75
A3	0.00	0.13	0.25
с	0.45	0.50	0.60
L	2.00	2.20	2.50
b	0.50	0.60	0.70
b1	0.60	0.70	0.90
е		1.27BSC	
E5	6.82	7.22	7.62
L4		0.258BSC	
ΦP1	1.40	1.50	1.60
θ	0.00	3°	7°
θ1	3°	5°	7°
θ2	3°	5°	7°
θ3	3°	5°	7°
θ4	3°	5°	7°
H2	0.98	1.20	1.42

Legal Disclaimer

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Existar Technologies reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Existar Technologies or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Existar Technologies in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Existar Technologies or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory.