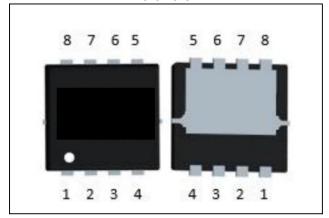
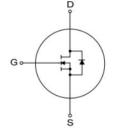


N-Channel 30V MOSFET

E030N6P0ML1

V _{DS} (V)	$R_{DS(on),max}$ (m Ω)	I _D (A)
30V	6 @ V _{GS} = 10V	30


Features


- Low R_{DS(on)} trench technology
- Low thermal impedance
- Fast switching speed
- 100% avalanche tested

Applications

- DC/DC conversion
- Power switch
- Moto driver

PDFN3.3X3.3

N-Channel

Package And Ordering Information

Ordering code	Package	Marking
E030N6P0ML1	PDFN3.3*3.3	EX03N30

Ordering Information

Package	Units/ Reel	Reels/ Inner Box	Units/ Inner Box
PDFN3.3*3.3	5000	1	5000

Key Performance Parameters

Parameter	Value	Unit
VDS, min @ Tj(max)	30	V
ID, pulse	160	Α
RDS(ON), max @ VGS=10V	6	mΩ
Qg	27	nC

Absolute Maximum Ratings at Tj=25°C Unless Otherwise Noted

Parameter	Symbol	Limit	Unit	
Drain-source voltage	V_{DS}	30		
Gate-source voltage		V_{GS}	±20	V
	T _C =25°C		30	
Continuous drain current	T _C =100°C	- I _D	14	
Pulsed drain current	I _{D,pulse}	160	А	
Avalanche energy, single pulse	E _{AS}	25	mJ	
Dower discination	T _C =25°C		30	
Power dissipation	T _A =25°C	P_{D}	3.6	W
Operating junction and storage temperature range		T _J , T _{stg}	-55 to 150	℃

Thermal Characteristics

Parameter		Symbol	Max.	Unit
Thermal resistance, junction-to-case	Steady state	Rejc	4.9	
Thermal resistance, junction-to-ambient	Steady state	$R_{ heta JA}$	42	°C/W

Electrical Characteristics at Tj=25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	
Static							
Drain to source breakdown voltage	V _{(BR)DSS}	30			>	V _{GS} = 0, I _D = 250 μA	
Gate-source threshold voltage	V _{GS} (th)	1.3	1.65	2.4	V	V _{DS} = V _{GS} , I _D = 250 μA	
Gate-body leakage	I _{GSS}			±100	nA	V _{DS} = 0 V, V _{GS} = ±20 V	
Zero gate voltage drain current	I _{DSS}			1	μΑ	V _{DS} = 30 V, V _{GS} = 0 V	
Drain-source on-resistance	Ros(on)		5.2	6	mΩ	V _{GS} = 10 V, I _D = 15 A	
Drain-source on-resistance	Ros(on)		7.8	10	mΩ	V _{GS} = 4.5 V, I _D = 10 A	
Gate resistance	Rg	0.2	2	5	Ω	f=1MHz	

Gate Charge							
Total gate charge	Qg		27	47			
Gate-source charge	Qgs		4.5	7.9	nC	V _{DS} = 15 V, I _D = 15 A, V _{GS} = 10 V	
Gate-drain charge	Qgd		5	8.8			
			Dynamic	;			
Turn-on delay time	$t_{d(on)}$		6.4				
Rise time	t _r		51			V _{DS} = 15 V, I _D =15 A, V _{GS} = 10 V,	
Turn-off delay time	$t_{d(off)}$		25		ns	$R_{GEN} = 3 \Omega$	
Fall time	t_f		15		110		
Input capacitance	C _{iss}	415		2430			
Output capacitance	C _{oss}	80		970		V _{DS} =15 V, V _{GS} = 0 V, f = 1MHz	
Reverse transfer capacitance	C _{rss}	30		245	pF		
Body Diode							
Diode forward voltage	V_{SD}		0.8	1.2	V	V _{GS} = 0 V, I _F = 15A	
Reverse recovery time	t _{rr}		7	28	ns	V _R = 0 V, I _S =15 A, di/dt = 100	
Reverse recovery charge	Qrr		1.4	6.4	nC	A/µs	

Electrical Characteristics Diagrams

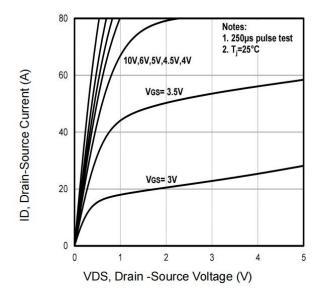


Fig1. Typical Output Characteristics

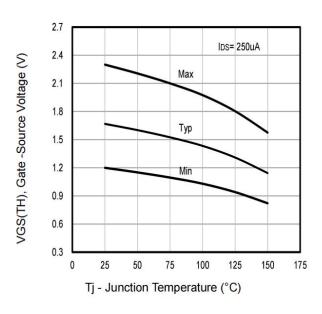
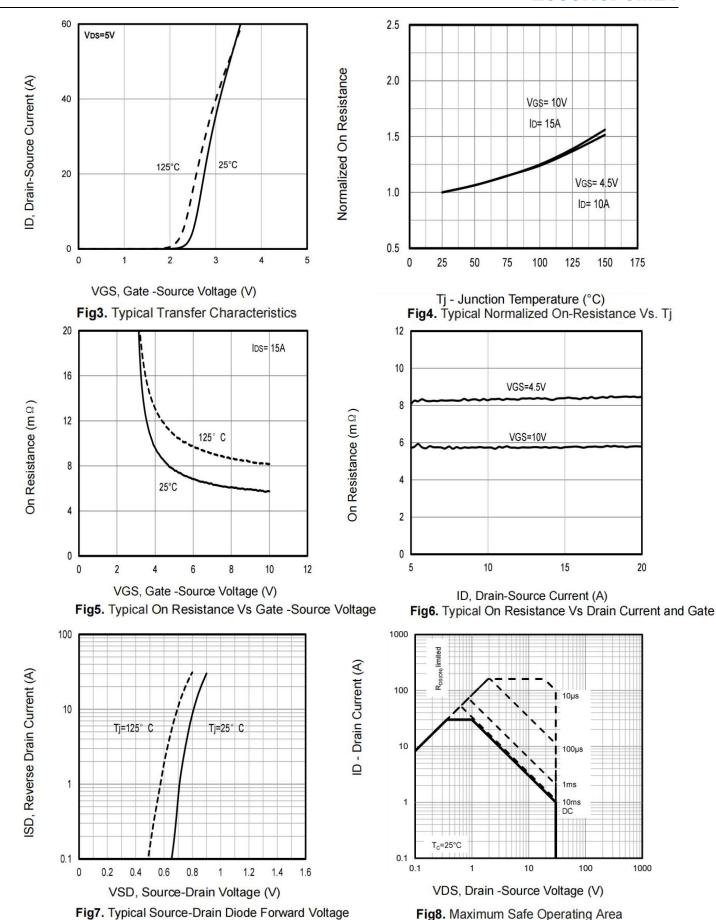
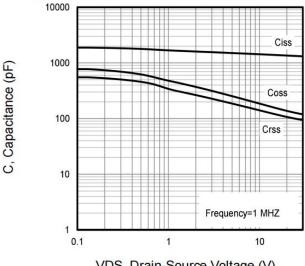
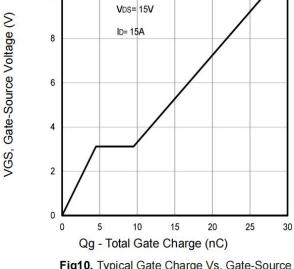




Fig2. Typical V_{GS(TH)} Gate -Source Voltage Vs. Tj



VDS, Drain-Source Voltage (V) Fig9. Typical Capacitance Vs. Drain-Source Voltage

10

Fig10. Typical Gate Charge Vs. Gate-Source Voltage

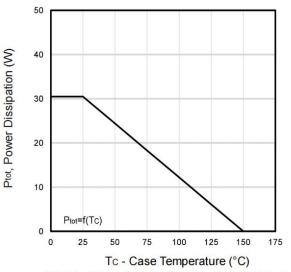


Fig11. Power Dissipation Vs. Case Temperature

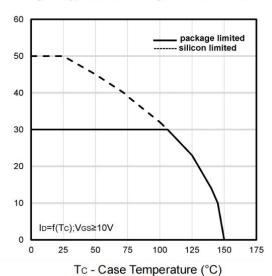
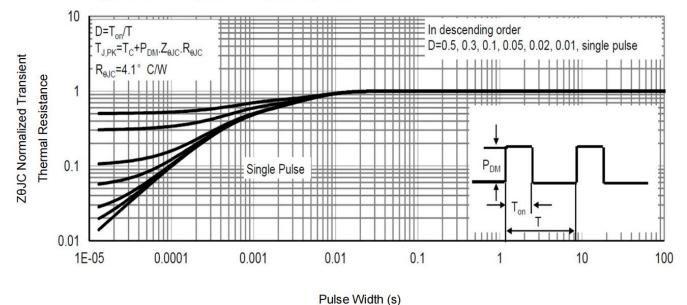



Fig12. Maximum Drain Current Vs. Case Temperature

D, Maximum Drain Current (A)

Fig13 . Normalized Maximum Transient Thermal Impedance

Test circuits and waveforms

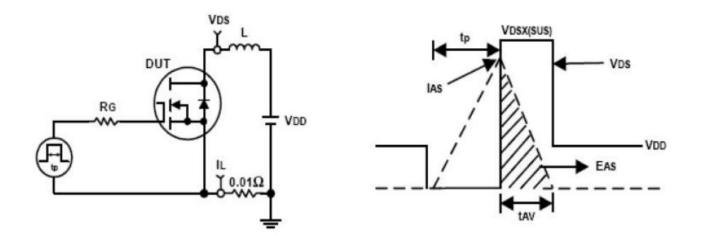
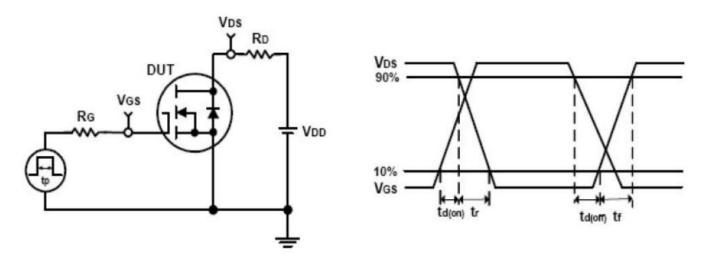
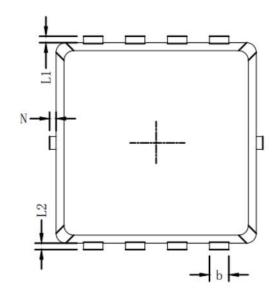
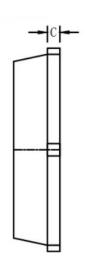
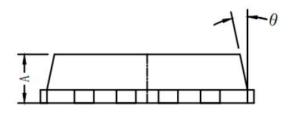
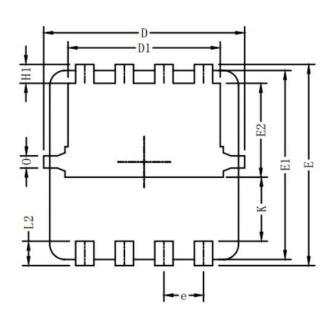


Fig1. Unclamped Inductive Test Circuit and waveforms


Fig2. Switching Time Test Circuit and waveforms




Package Outline Dimensions

PDFN3.3*3.3

Crowb a La	Millimeters					
Symbols	MIN.	NOM.	MAX.			
A	0.65	0.75	0.85			
b	0. 25	0.30	0.35			
C	0.15	0. 20	0.25			
D	3.00	3. 10	3. 20			
D1	2.40	2.50	2.60			
Е	3. 20	3. 30	3. 40			
E1	3.00	3. 10	3. 20			
E2	1.60	1.70	1.80			
е	(. 65 BSC				
H1	0.21	0.31	0.41			
Н2	0.30	0.40	0.50			
K	0.95	1.05	1.15			
L1/L2	0.10 REF.					
θ	11°	12°	13°			
N	0	-	0. 15			
0	0. 2 REF.					

Legal Disclaimer

The information given in this document shall be for illustrative purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Existar Technologies reserves the right to change any information herein. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Existar Technologies or its affiliates hereby make no representation or warranty of any kind, expressed or implied, as to any information provided hereunder, including without limitation as to the accuracy, completeness or non-infringement of intellectual property rights of any third party, and they assume no liability for the consequences of use of such information. In addition, any information given in this document is subject to customer's compliance with its obligations stated herein and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Existar Technologies in customer's applications. The information contained herein is exclusively intended for technically trained staff. No license is granted by implication under any patent right, copyright, mask work right, or other intellectual property right. It is customer's sole responsibility to evaluate the suitability of the product for the intended application and the completeness of the product information given herein with respect to such application. In no event shall Existar Technologies or its affiliates be liable to any party for any direct, indirect, special, punitive, incidental or consequential damages of any nature whatsoever, including but not limited to loss of profits and loss of goodwill, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory.